Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique.

نویسندگان

  • Yanping Cui
  • Changzhu Yang
  • Wei Zeng
  • Munetaka Oyama
  • Wenhong Pu
  • Jingdong Zhang
چکیده

Seed-mediated growth of gold nanoparticles on glassy carbon (GC) surfaces was developed. The field emission scanning electron microscopy (FE-SEM) and electrochemical characterization confirmed the effective attachment of gold nanoparticles on GC surface with such a wet-chemical method. The as-prepared gold nanoparticles attached glassy carbon electrode (Au/GCE) presented excellent catalytic ability toward the oxidation of nitrite. Compared with bare GCE and planar gold electrode, the Au/GCE obviously decreased the overpotential of nitrite oxidation and improved the peak current. The catalytic current was found to be linearly proportional to the nitrite concentration in the range of 1 x 10(-5) - 5 x 10(-3) M, with a detection limit of 2.4 x 10(-6) M. The Au/GCE was successfully applied to the electrochemical determination of nitrite in a real wastewater sample, showing excellent stability and anti-interference ability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol

Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...

متن کامل

Electrochemical Detection of Hydrazine Using a Copper oxide Nanoparticle Modified Glassy Carbon Electrode

Metallic copper nanoparticles modified glassy carbon electrode is fabricated by reduction of CuSO4 in the presence of cetyltrimethylammonium bromide (CTAB) through potentiostatic method. As-prepared nanoparticles are characterized by scanning electron microscopy and electrochemical methods. Copper oxide modified glassy carbon electrode (nano-CuO/MGCE) is prepared using consecutive potential sca...

متن کامل

Electrochemical assay of anti-tetanus toxoid monoclonal antibody by silver enhancement of gold nanoparticles at carbon nanotubes modified glassy carbon electrode

Tetanus is caused by the toxin secreted by Clostridium tetani. Due to the rapid infection with this bacterium, it is so important to investigate the tetanus immunity of people. Therefore, electrochemical biosensors, as one of the most effective tools in this regard, have demanded characteristics such as being fast, simple, cost-effective and portable. However, their detection sensitivity is not...

متن کامل

Electrochemical determination of nitrite and iodate based on Pt nanoparticles self-assembled on a chitosan modified glassy carbon electrode.

A promising electrochemical sensor was fabricated by the self-assembling of Pt nanoparticles (nano-Pts) on a chitosan (CS) modified glassy carbon electrode (GCE). A field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM) and electrochemical techniques were used for characterization of these composites. It has been found that nano-Pts are inserted into the CS...

متن کامل

Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

A graphene nanosheets (GNS) film coated glassy carbon electrode (GCE) was fabricated for sensitive determination of tyrosine (Tyr). The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 23 12  شماره 

صفحات  -

تاریخ انتشار 2007